# A Threshold Cryptographic Backend for DNSSEC

Francisco Cifuentes francisco@niclabs.cl



#### Key Management Implementations Back to ICANN 40









## Key Management Implementations





#### Needs

- Zones need to be re-signed periodically.
- Keys must not be cloned.

#### Problems

- Hardware fails.
- HSM are expensive.
- SoftHSM can be vulnerable.



#### What was proposed? A Threshold Cryptographic Backend.





#### Our work with OpenDNSSEC



- Distributed
- Fault Tolerant
- Robust
- Secure





- Distributed
  - Private key is split into shares and distributed among *n* nodes.
  - The signing procedure is called in each of the n nodes.



- Fault-Tolerant
  - A subset of nodes can fail and the signing process will be completed succesfully.



- Robust
  - Failures and attacks can be reduced implementing nodes in both different programming languages and operative systems.



- Secure
  - No one holds the complete private key.
  - More than k nodes have to be endangered to authorize faked signatures.



## What it is?

- Basically, a PKCS#11 API provider.
- It uses the Threshold Cryptographic Backend implemented then.

Research labs

• It actually signs DNS records.



### What it is not?

• A fully compliant PKCS#11 implementation.



#### Future work

- Complete the PKCS#11 implementation, in order to make it usable directly from BIND (or any other software).
- Test on a real zone set.

# Questions?

Francisco Cifuentes francisco@niclabs.cl

